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Exergetics Define System Viability

ATy —ATp ATy —ATlp

AT  InAT4 — InAT
ln(A—fTé) n A 8l B

Q=UXxXAxLMTD LMTD =

e Minimize AT to maximize
reversibility of heat transfer

= Series of stepwise HTFs

o HX systems are massive! ($$$)
o True for HXers and boilers

eshmukn, Y. V. USTri 1 il
Applications, and Design; CRC Press, 2005,
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e Green electricity (PV/wind):
o Intermittent, expensive (>2¢/kWh)

Renew. Sust. Energ. Rev. 2018, 89, 51.

Monthly capacity factors for select r

(January 2011-October 2013)

100%
90%
80%

60%
50%
40%
30%
20%
10%

0%

ble fuels and

)

)

70% M vaste
geothermal

biomass

< hydro

solar thermal

Jan-11

JL]|-11 J;n-12 JL'||-1Z
Type of power generation
Photovoltaics
Solar thermal
Solar thermal with storage
Wind
Hydropower
Geothermal
Nuclear reactor

Coal thermal

J ;n-1 3 J lj|-1 3
Capacity factor (%)
12-19
~15
70-75
2040
30-80
70-90
60-100

70-90



Renewables: An Exergetic Solution? (No.)

e Green electricity (PV/wind):
o Intermittent, expensive (>2¢/kWh)

e Concentrated solar-thermal:
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e Green electricity (PV/wind):
o Intermittent, expensive (>2¢/kWh)

e (Concentrated solar-thermal:
o Localized, intermittent, >>2¢/kWh

o TES/TCES struggles above 550 °C -
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o Localized, T-limited (<350 °C), $$$ |
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Inspiration: Hybrid Geothermal/CSP

e Hybrid systems cover
each others’ flaws

o Geothermal fluid 4
provides TE SforCSP = -

o CSP augments T of LY A
geothermal fluid e WV

o Also exacerbates
common shortcomings!
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Electroceramic Heating Elements

e Typical resistivities: 10°~1 Q-m
o Must match w/ element dimensions, available power
o Modulate by doping (SrO in LaCrO,)

e Electric p spans ~15 orders o_f magnltude

(thermal k spans ~95) § </
e Common materials: 4

Self-bonded SiC
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Ohmic Heating: Control Systems
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Rapid, quantitative feedback

Ohmic Heating: Control Systems

— ripe for neural networks
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e Enables novel
(difficult-to-machine)
HX configurations
o Gyroids, TPMSs

Meet. Abstr. 2017, MA2017-01 (23), 1172.



Additive Manufacturing Electroceramics

e Enables novel
(difficult-to-machine i
HX configurations
o Gyroids, TPMSs

e SiC, MoSi,, LiSIO,
are demonstrated

1000
Wm2KA1)

Xiangxia, W. Fabrication of Electroceramics using Additive Manufacturing. Ph.D. Thesis, 2018.
Additive Manufacturing of Functional Ceramics. In 3D Printing for Energy Applications 2021; pp 33-67.
Zaengle, J. T. H. C. Additive Manufacturing of YSZ and Lithium Silicate Electroceramics for Energy Generation and Storage. Ph.D. Thesis, 2021.
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e High compatibility with HITEMMP

o Ceramics occupy unique materials niche for HXers
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Outlook & Recommendation

e High compatibility with HITEMMP

o Ceramics occupy unique materials niche for HXers
o AM of TPMS HXers overlaps with Topic S: Topology

Gas turbine
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Example Projects

Novel methodologies/substrates for

electroceramic additive manufacturing
o (Cost reductions for raw materials / infiltration

HXer designs with integrated ohmic heating
o Modeling of 3D ohmic heat spreading

Simulate/develop ternary/quaternary hybrid
energy systems (unprecedented?)
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Process heat quality:
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Ohmic Heat Exchangers

Material Design:
o T stability (MP, thermal shock /
chemical oxidation resistance)
o Resistivity (QQ-m; case-by-case)
o Cost ($/kg)

Heat Exchanger Design:
o Specific power density (kW, /kg)
o  Volumetric power density
(kWth/m3)
o Mean time-to-failure (kilo-hrs)
o Manufacturability ($-°C/kW,, )
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Bonus Slides

| sure hope | don't end up having
to use any of these



Nuclear Heating

e Small Modular
Reactor (SMR)
nybridization with
PV has been
studied
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Challenges for CSP

Potential for solar thermal across the G-20

e Localized, intermittent

e Difficulty of TES

o 2"-gen nitrates: decompose at ~560 C y , P

o Chloride salts: good to 800 but corrosivew/H,O

o Solid-particle: good to >800 but parasitic energy cost of fIU|d|zat|on
particle loss, accelerated abrasion

o Latent/TCES is so goddamn messy

e T limitation: parabolics hard to break 550, can get to 700 C

w/ next-gen insulation but emittance is just too high
o Power towers can get to 800~10007



Concentrated Solar Heating

Consolidate CSP preheating (receiver-reactors)

Challenge: good receivers by definition have
good emissivity (high SA), are near ideal
black-bodies

— will radiate heat well, poor HXers



Roasted ore,
coke, limestone

751t,230 °C
65 ft, 410 °C
55,ft, 525EC
45 ft, 865 °C

35 ft, 945 °C

251t, 1125 °C

15 ft, 1300 °C

5ft, 1510 °C

Molten iron



why did i make this




Traditional

Historically, Ohmic heating is rarely used because electricity is among the
most expensive forms of energy

o This calculus would change if PV fell to 2¢/kWh
Widespread Ohmic heating still has problems:

o Intermittency (still needs to function cheaply at night)

o Mechanism of Ohmic heat transfer is not great!

m  MoSi, elements (good to 1200 C) are expensive, fragile, and can
burn out easily

Solution: 3-D electroceramic elements -- no single point of failure!



Ohmic Heating

Electroceramics/thermoelectrics:
HXers that are also Ohmic heating elements
Additive manufacturing:
Allows for next-gen HX designs (gyroids)
Compatibility with electroceramics?
Heat element design: MoSi,, others?
Challenge: cost, control systems



Overview

Motivation (industrial decarb)
Incumbent tech

a. HXers, boilers, arc furnaces
b. Flaws of CSP, geothermal, PV/wind

Inspiration (Hybrid CSP/geothermal)
a. Hybrid Energy Systems (MISO)
CSP for boiler feedwater

Ohmic exchangers

a.  Challenges of industrial Ohmic heating

b.  Additive manufacture of electroceramics

c.  Triply periodic minimal surface HXers

d. Ohmic control systems (analogy to arc furnaces)

Outlook

a. Compeatibility with HITEMMP and Topologies
Example projects and metrics

HOTBOX



Inspiration: hybrid geothermal/CSP
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Exergetics Define System Viabilit

COCURRENT

Tt o 7

T ’r. in ‘\“

e Series of HXers required I L&; L. |
o Feedwater heater, flue gas heater, superheater, £ t 5
o Series of fluids of increasing T i
e \ery very big! . -

o Compact HXers have low market penetration
o Difficult to compact b/c mass flow, residence timdg

o Q=UA*LMTD Q@=Ux AxLMTD | >
o Need to minimize TD for direct heat transfer P

— series of HXers needed for exergetic efficiencyg
LMTD — AT, — ATg o ATy — ATg .

AT,  InAT4 — In AT
In(37;) ’ ’




Boilers / Combustive Heating

Replace feedwater heaters w/ e.g. CSP

Temp ranges:

Hydrocarbons (methane, LPG, k|

diesel, oil...biofuels?): all ~2000 C

Hydrogen: ~2000 C (air); 2660 ( \ r

eeeeeee
HPT = High pre.
LPT = Low pre:

IIIIIIII

ssure turbine
ssure turbine




Industrial

carbon
emissions
10 GtCO,

percentage of sources percentage of sectors

»

I
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i
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US EIA Monthly Energy Review, 2021.
Science 2018, 360 (6396), eaas9793.
Environ. Sci. Technol. 2010, 44, 1888.



Motivation

~2/3rds of industrial energy consumption is for
process heat (~30 quads)

10~20% of anthropogenic emissions

Industrial heat use relative to global final energy Global industrial heat production by fuel source, 2018
consumption, 2018 Renewables, Electricity,
Other, 2%  Industry (non-process 9% 10%
heat), 6% i Other
Transport, (purchased
33% steam), 6%

Industry Gas, 23%

(process heat),
29%

Solar Thermal Process Heat (SPH)
Generation. In Renewable Heating and
Coal, 41% Cooling; 2016; pp 41-66
Decarbonizing Industrial Low- to
Medium-Temperature Heat
BloombergNEF, 2021

Oil, 11%

Residential and
ommercial, 33%




Challenge/lnherency

Global industrial heat demand by temperature, 2018

Process heat requires consi -

sssssssssssssssssssssssssss -20 by temperature range, 2018 50°C)

heat
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m High (>400° C) Medium (150-400° C) Low (<150° C)

Intermittent renewables provide low-quality
heat (e.g. CSP Ts barely up to 700 C)



Incumbent sustainable energy sources can't decarbonize
high-T industrial reactions (~10% of anthropogenic
emissions) without revolutionary breakthroughs. but with
hybrid heat exchangers you synchronize multiple
sustainable energy inputs to achieve the same effect but
without having to hit moonshot targets for any of the
constituent energy systems



Types of energy input:

CSP

Combustion

Ohmic (electricity) -- PV, wind
Geothermal

Nuclear



Advantages and disadvantages:

CSP: T limited (<550~850 C)
Combustion: needs CCS for near net-0
PV, wind: intermittent

Geothermal: localized
Nuclear: CAPEX, waste



New technologies

Modular/Hybrid heat exchangers that take
multiple energy inputs simultaneously

E.g. geothermal/CSP for sustainable
“baseload” heat

combustion/Ohmic heating for “last-mile”
heating



Control Systems Targets

Material requirements

Steady-
c  State/Dynamics Scheduling Investment

Control requirements
Technoeconomics?

- Distribution | Distribution -

Devices




Ohmic Heating: Elements

Typical resistivity: 0.01-1 Q-m
o Need to match impedance with available power
Good match for rods ~1m long, ~1cm diameter
Can be modulated by doping (e.g. SrO in LaCrO,)
Resistors are typically 103~108 Q, conductors are typically <10° Q-m
11 cm 10° Q resistor from 10® Q-m material would require 102 m? cross-sectional area
(i.,e. 1 ym x 1 um) — material design needs to fit physical use case
o This is doable because electrical p spans ~15 orders of magnitude (thermal K spans ~5)

Refractories:

o resistant to decomposition by heat, pressure, or chemical attack, retains strength and form
at high temperatures
o 70% of all refractories used in iron/steel

Service life depends on atmosphere, glaze

o O O O



Incumbent Techologies

e This is kinda already done at small scale
o H, SOEC goes in at 800 C, comes out at 750 C
o Recycle 750 C output stream
o Uses Ohmic heating for last 50 C of heating
m Requires 3 separate HXers!!



HX metrics

Heat exchanger specific/volumetric power
density (kW, /kg & kW, /m°)

Mean time-to-failure (MTTF)
Manufacturability ($-K/kW,, )



Metrics/Technoeconomics

e Process heat:
o Highest accessible T
o ¢/kWh, (as a function of process T)
e Hybrid capacity factor:
o Avg. % of time system is operating at or above full
rated output of its most energetic system

e Just plain # of energy inputs



Material Targets

T stability (MP, thermal shock, oxidation)
Mechanical strength (tough for ceramics)
Thermoelectrics: ZT~10

Cost of heating elements / electroceramics



Metrics/Technoeconomics

e Cement: 4-5 GJ/ton

o Responsible for 40% of total cost
o 222 kg CO, / ton cement (due to energy)
o 9530 kg CO, / ton cement (decarbonation)
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Extant ARPA-E projects

HITEMMP:
https://arpa-e.energy.gov/technologies/program

s/hitemmp

Topologies:
https://arpa-e.energy.gov/technologies/explorat
ory-topics/topology-optimization



https://arpa-e.energy.gov/technologies/programs/hitemmp
https://arpa-e.energy.gov/technologies/programs/hitemmp
https://arpa-e.energy.gov/technologies/exploratory-topics/topology-optimization
https://arpa-e.energy.gov/technologies/exploratory-topics/topology-optimization

