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Fossil Fuels are Bad

AND THE AMAZING THING 1S THAT
NO POLLUTANTS COME QUT OF THE
TAILPIPE. JUST PURE WATER.

3 [

I SPLIT THE HYDROGEN
FROM THE OXYGEN USING
ELECTRICITY CREATED BY
BURNING PANDA HABITAT,
FAT FROM ENDANGERED
RHINOS, AND A FAMILY
OF BLUE WHALES.

WOW/
HOW'S 1T
WORK2

This is what I visualize every time someone refers to
fuel cell vehicles as “emissions free.”

Weinersmith, Z. Saturday Morning Breakfast Cereal,
February 19, 2022.

2/15



[citation needed]

Solar Power is Great!

AND THE AMAZING THING 1S THAT
NO POLLUTANTS COME QUT OF THE
TAILPIPE. JUST PURE WATER.

3 [

I SPLIT THE HYDROGEN
FROM THE OXYGEN USING
ELECTRICITY CREATED BY
BURNING PANDA HABITAT,
FAT FROM ENDANGERED
RHINOS, AND A FAMILY
OF BLUE WHALES.

WOW/
HOW'S 1T
WORK2

This is what I visualize every time someone refers to
fuel cell vehicles as “emissions free.”

Weinersmith, Z. Saturday Morning Breakfast Cereal,
February 19, 2022.

2/15



Solar Power is Great!

AND THE AMAZING THING 1S THAT
NO POLLUTANTS COME QUT OF THE
TAILPIPE. JUST PURE WATER.

3 [

V////[[/] ][4 WOW/
1 PV FROM. THE Orveen oG | \ Hows IT
V//////]]]]4 ELECTRICITY CREATED BY

V/([/[]]]]7] BURNING PANDA HABITAT,

FAT FROM ENDANGERED

RHINOS, AND A FAMILY
OF BLUE WHALES.

This is what I visualize every time someone refers to
fuel cell vehicles as “emissions free.”

Weinersmith, Z. Saturday Morning Breakfast Cereal,
February 19, 2022.

2/15



Solar Power is Great!

AND THE AMAZING THING 1S THAT
NO POLLUTANTS COME QUT OF THE
TAILPIPE. JUST PURE WATER.

WOW/

V/////// /14 b
Yy PV CsP S enG TR s 1T
V//////]]]]4 ELECTRICITY CREATED BY
/llllllll BURNING PANDA HABITAT,

FAT FROM ENDANGERED
RHINOS, AND A FAMILY
OF BLUE WHALES.

This is what I visualize every time someone refers to
fuel cell vehicles as “emissions free.”

Weinersmith, Z. Saturday Morning Breakfast Cereal,
February 19, 2022.

2/15



...but it can’t do everything (yet)

GLOBAL FOSSIL FUEL AND INDUSTRY EMISSIONS
33.9gigatons CO), 2014
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e Consolidate projects under a single umbrella
e Work with HFTO to drive down green H, cost
e Scale & advance solar fuels synthesis to
demonstration-scale pilot projects psy @ &7 °
e Example metrics and targets:
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\ \ \

e Consolidate projects under a single umbrella
e Work with HFTO to drive down green H,, cost
e Scale & advance solar fuels synthesis to

demonstration-scale pilot projects  F5Y @ £ 7 i
e Example metrics and targets:

Capital cost ($ / W)
5

o Levelized cost of energy storage: <$0.02/kWh @@ s

o Accessible industrial temperature: ~ >700 °C N

o Levelized cost of clean hydrogen: $1/kg

o Energy interconversion efficiency: >95% ——

o Valuable hydrocarbon selectivity: >56% / .
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Hypothetical Solar Fuels Utopias

e Ammonia for zero-carbon heavy transport

o Synthesize NH, from air + green H, s
using PV/CSP on solid-oxide catalysts e
o Safely/reversibly store / transport NH, as
absorbed [Mg,Ca]Cl, ammine salt complexes

J. Mater. Chem. 2008, 18, 2304.

Int. J. Hydrog. Energy 2012, 37, 1482.
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Hypothetical Solar Fuels Utopias

e Ammonia for zero-carbon heavy transport

O

Synthesrze NH, from air + green H,

Safely/reversibly store / transport NH, as
absorbed [Mg,Ca]Cl, ammine salt complexes
Fuel cells and engines for direct combustion
2NH, +3/20,— N,+3H,0
Decarbonize the entire fertilizer industry
(~1.4% of global emissions) while we're at it
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Feed O~O~ O~ O~O~O~ Product
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e Sorption-enhanced iron production: s, = &,

o Coembedded water-gas shift catalysts and CO,
sorbents efficiently valorize CO exhaust to H, J
CO+H,O—-H,+ COz(capt”"ed) Sy
o Onsite H, stream enables DRI production from ore ;(f e
o PV field-enhanced splitting of high-purity captured sigsr
CO, to CO on nonstoichiometric ceria CeO,
o CSP for Fischer-Tropsch upgrading of CO + H, d .
to store energy and regenerate input fuel stream

React. Chem. Eng. 2019, 4, 1431.
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The Future

AND THE AMAZING THING 1S THAT
NO POLLUTANTS COME QUT OF THE
TAILPIPE. JUST PURE WATER.

1 1

T SPLIT THE HYDROGEN
FROM THE OXYGEN USING
ELECTRICITY AND HEAT
CRENTED 8Y

SOLAR ENERGY
TECHNOLOGIES




