C1 Conversion **Chemistries: Industrial Applications and Outlook**

Jonathan "Jo" Melville CSP Strategy Meeting March 3rd, 2022

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Energy Efficiency & Renewable Energy

C1 Reaction Space: Very Big

The Usual Suspects

More oxygen → more oxidized!

Table of Contents (CH₄ Feedstock)

- Steam Methane Reforming (SMR)
- Partial CH₄
 Oxidation
- Methane Pyrolysis
 On solid catalysts
 In liquid metals

- Oxidative CH₄
 Coupling (OCM)
- Nonoxidative CH₄ Coupling (NOCM)
 - Methane to Olefins/ Aromatics/Hydrogen (MTOAH)

Table of Contents (MeOH Feedstock)

- Methanol Steam Reforming (MSR)
- Methanol to Olefins Upgrading (MTO)
- Methanol to Ethylene Glycol (MTEG)

Table of Contents (CO Feedstock)

- Fischer-Tropsch
 (F-T)
 Methanation
- Boudouard Reaction
- Electrochemical CO to Ethylene (ECOTE)

- Oxide-Zeolite Syngas
 Upconversion
 (OX-ZEO)
 - Electrochemical

Water-Gas Shift (RT-EWGS)

Table of Contents (CO₂ Feedstock)

- Thermochemical CO₂ Splitting on Solid Oxides
- [Reverse] Water
 Gas Shift (RWGS)

- Electrochemical CO₂ reduction (eCDR)
 - to CO, HCOOH
 - to C_2H_4 , EtOH, etc.
 - on gas-diffusion electrodes (low-T)
 - on solid-oxide electrodes (high-T)

Methane

Steam Methane Reforming (SMR)

•
$$CH_4 + H_2O \rightarrow CO + 3H_2$$

- $\circ \Delta H = 206 \text{ kJ/mol}$
- T: 650~900 °C; P: 20~30 bar
- Catalysts: e.g. Ni/MgO
- Autothermal reforming:
 - Uses purified O₂ instead of air for oxidant feedstock
 - Allows control of H_2 :CO ratio

Oxidative CH₄ Coupling (OCM)

- $2 C_2 H_6 + O_2 \rightarrow 2 C_2 H_4 + 2$ $H_2 O$
 - T ~750 °C
 - Catalyst: Li/MgO
 - 50-80% C₂ selectivity
 - \circ 20-40% CH₄ conversion
- Radicaloid mechanism

Chem 2020, 6 (10), 2497–2514.

silurio

TECHNOLOGIES

Nonoxidative CH₄ Coupling (NOCM)

•
$$n \operatorname{CH}_4 \to \operatorname{C}_n \operatorname{H}_{2n+2} + \operatorname{H}_2 (n = 2-6)$$

- I = 250-1100 °C• Catalyst: Pt/SiO₂, Mo/zeolite
- 40-95% C_{2+} selectivity
- \circ 1-45% CH_4 conversion
- Low CH₄ conversion, coking are problems

FIG. 1 Molar flow rates of H₂ and C₂H₆ at the exit of the reactor during the exposure of the Pt to CH₄ at 250 °C. Sample mass: 100 mg of EURO PT-1 (see text). Flow rate of CH₄: 400 ml min⁻¹ under ordinary pressure.

Methane to Olefins/Aromatics/Hydrogen (MTOAH)

- $CH_4 \rightarrow C_2H_4$, aromatics, H_2
 - T ~ 1100 °C
 - Catalyst: Fe_1 ©SiO₂
 - \circ 48.1% CH₄ conversion
 - \circ 48.4% C₂H₄ selectivity
- No coking!

• Radicaloid surface mechanism

Methane to Olefins/Aromatics/Hydrogen (MTOAH)

- $CH_4 \rightarrow C_2H_4$, aromatics, H_2
 - T ~ 1100 °C
 - Catalyst: Fe₁©SiO₂
 - 48.1% CH₄ conversion
 - \circ 48.4% C₂H₄ selectivity
- No coking!

• Radicaloid surface mechanism

- $CH_4 \rightarrow C + 2H_2$
 - \circ $\Delta H = 75 \text{ kJ/mol} (298 \text{ K}) \rightarrow 93 \text{ kJ/mol} (1600 \text{ K})$
 - Compare $\Delta H = 126 \text{ kJ/mol for SMR}$ (incl. $\Delta_{vap}H$)
 - ΔG = 0 kJ/mol @ ~550 °C
 - T generally 600~2000 °C -- as low as 400~500 C w/
 right catalysts (Ni)
 Newer Hydrogen Production Method No Greenhouse Gas Pollution
 - **P = 1 bar**

Russ. J. Appl. Chem. 2020, 93 (5), 625–632.

- 1 ton $CH_4 \rightarrow$ 250 kg H_2 + 750 kg C
- 50 GJ + Δ_R H \rightarrow 30 GJ + 24.6 GJ
- >40% the energy is sequestered as C!

- Catalysts for methane pyrolysis:
 - TMs (**Ni**, Pd, Pt, Fe, Co) on Al_2O_3 , MgO, SiO₂, TiO₂
 - Nanotubes (?!)
 - Regeneration is difficult (esp. w/o burning off C)

Accomplishments and Progress Process Models for Methane Pyrolysis Indicate >80% Reduction in GHG Possible

Proudly Operated by Battelle Since 1965

	Raw Materia	l	Utility	Byproduct	Performance		
	Natural gas (kg/kg H2)	HNO3 (kg/kg H2)	Electricity (kWh/kg H ₂)	Carbon (kg/kg H2)	CO ₂ Emission (kg/kg H ₂)	Efficiency (%, LHV) ^(d)	
SMR ^(a, b)	3.42		0.28-2.10		9.6-11.5	70-80	
SMR+CCS (c)	3.68		0.60		2.98	71.4	
C1 Pyrolysis	4.65	0.18	3.13	3.05	1.67	53.5	

(a) PEP Yearbook, Hydrogen production by steam reforming of natural gas, 1E-586, 2014.

(b) PEP Yearbook, Hydrogen small scale by steam reforming, 1E-573, 2014.

(c) NREL, case study: central natural gas, future central hydrogen production from natural gas with CO₂ sequestration version 3, 2018.

(d) Carbon product is excluded.

Process models developed comparing this pyrolysis process and baseline SMR and SMR + CCS cases.

Raw material cost and stoichiometry disfavor ANY methane pyrolysis technology over steam reforming:

Pyrolysis:
$$CH_4 \rightarrow C + 2H_2$$

Steam Reforming:
$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$$

Emission reductions and sale of carbon co-product are benefits for pyrolysis. Methane pyrolysis technologies being developed MUST produce a value-add carbon co-product to compete with SMR on a purely cost basis (although regulations could provide additional incentive).

- Pyrolysis mostly makes carbon black
 - Primary application: "reinforcing filler" for tire rubber -- up to 50 wt% carbon black (~70%)
 - Also generic rubber additive (~20%), pigments
 - Market size: ~18 Mt/yr, value: ~\$18.7bn
 - Corresponds to ~6 Mt H₂ (out of 60~80 Mt/y globally)
- Might make nanotubes/filaments on the right catalysts? (at low T though → low conversion)
 - C black: ~\$1/kg; graphitic C: ~\$10/kg; C fibres: ~\$50/kg
- TL;DR don't count on carbon commercializability

Challenges in Methane Pyrolysis

- Solid C product causes coking/clogging
 - Liquid metal pyrolysis attempts to solve this
- Side products: hydrocarbons, PAHs
- Effects of other NG components is unclear
 - But may actually have positive catalytic effects???
 - radicals, man

Liquid-Metal Methane Pyrolysis

- Liquid Ga/Sn/Pb/Bi (200-700 C)
 - Low-melting, minimal catalytic activity
 - Could be a carrier for active metal catalysts
- Liquid Ni/Pd/Pt/Co/Fe (700-1200 C)
 - Active pyrolysis catalysts, but higher-melting
- 95% CH₄ conversion for Ni_{0.27}Bi_{0.73} @ 1065
 C
 - "As far as it is known to date, there is arguably no practical procedure to continuously collect and separate the floating carbon, even if it does not appear as a particular obstacle given the existing

Solar Thermal Methane Pyrolysis?

Reference	Year	Heating Mode	Catalyst	Carbon Co-Feed	T (°C)	τ _r (s)	X _{CH4} (%)
Kogan and Kogan [107]	2003	Indirect irradiation	No catalyst	None	1047	NA	27.3
Dahl et al. [95]	2004	Indirect irradiation	No catalyst	СВ	1860	0.01	90
Abanades and Flamant [14]	2007	Direct irradiation	No catalyst	None	1385	0.1	97
Abanades and Flamant [112]	2008	Direct irradiation	No catalyst	None	1400	0.25	99
Abanades et al. [98]	2008	Indirect irradiation	No catalyst	None	1580	0.018	99
		Indirect irradiation			1550	0.011	78
				Mana		0.032	100
Rodat et al. [103]	2009		No catalyst	inone	1700	0.011	93
					1800	0.011	100
	2009	Indirect irradiation	No catalyst		1500	0.032	98
Rodat et al. [104]				None	1470	0.012	62
						0.035	98
Maag et al. [108]	2009	Direct irradiation	No catalyst	CB	1043	<2	98.8
Rodat et al. [102]	2010	Indirect heating	No catalyst	None	1520	0.061	99
D 1 1 [0:1		Indirect irradiation	N		1700		93
Rodat et al. [96]	2011		No catalyst	None	1800	- 0.011	100
		Direct irradiation	No catalyst		1450		100
Yeheskel and Epstein [106]	2011		Fe(CO)5	None	1200	NA	50
			Fe(C ₅ H ₅) ₂		800	420.001	15-20
Abanades et al. [113]	2014	Indirect irradiation	СВ	None	1200	0.12	≈100
Paxman et al. [109]	2014	Indirect irradiation	No catalyst	None	1100	NA	69
41	10000	Indirect irradiation	CB (co-feed considered	<u></u>	100000	0.113	50
Abanades et al. [110]	2015		as catalyst)	CB	1250	0.038	15

Figure 1. Directly- vs. indirectly-irradiated solar reactors used for methane pyrolysis: (a) 5 kW directly-irradiated reactor (Copied from Ref. [108] with Elsevier permission), (b) 50 kW indirectlyirradiated reactor (Copied from Ref. [102] with Elsevier permission).

Partial Methane Oxidation

- $CH_4 + O_2 \rightarrow CH_3OH / CH_3COOH$
 - T ~ 200-400 °C
 - Catalyst: zeolite (Cu-ZSM-5) or MMO
 - \circ ~97% selectivity, ~17% conversion
- Overoxidation!

Methanol

Methanol Steam Reforming (MSR)

- $CH_3OH + H_2O \rightarrow CO_2 + 3H_2$ \circ T=150-250 °C
 - Catalyst: Cu/ZnO or CuAl₂O₄ spinel;
- Challenges: suppressing CO, non-noble catalysts, preventing sintering

Angew. Chem. Int. Ed. 2014, 53 (44), 11886-11889.

Mobil Methanol-to-Olefins (MTO)

- $2 \operatorname{CH}_3\operatorname{OH} \rightarrow \operatorname{CH}_3\operatorname{OCH}_3 + \operatorname{H}_2\operatorname{O};$ $\operatorname{CH}_3\operatorname{OCH}_3 \rightarrow \operatorname{C}_n\operatorname{H}_{2n} + \operatorname{H}_2\operatorname{O}$ $\circ \quad \mathrm{T} \sim 250 \ ^\circ\mathrm{C}, \ \mathrm{P}: 50 \sim 100 \ \mathrm{bar}$
 - Catalyst: ZSM-5 / SAPO-34
 - Primarily $C_2 C_3$ products
 - Briefly commercialized (Motonui, NZ)
 - Used for coal liquefaction (Jincheng, China)

Pet. Sci. Technol. 2019, 37(5), 559-565.

Methanol to Ethylene Glycol (MTEG)

- $2 \text{ CH}_3\text{OH} \rightarrow \text{HOCH}_2\text{CH}_2\text{OH} + \text{H}_2$
 - Photocatalytic! (Vis)
 - Room temperature, 1 atm
 - Catalysts: ZnS, CdS, MoS₂
 - \circ 2~20% CH₃OH conversion
 - ~90% EG selectivity
 - Prone to overoxidation.
 - No known thermochemical route! (IoI)

Nat. Commun. 2018, 9 (1), 1181.

Carbon Monoxide

Fischer-Tropsch (F-T)

- $n CO + H_2 \rightarrow C_n H_{2n} + H_2 O$
 - Can make light olefins (n=2-4), paraffins (n=10-20)
 - T: 200-300 °C (LTFT), 300-350 °C (HTFT); P: 1~20 bar
 - Catalysts: Co/Fe/Ru/Mo/Ni on zeolites, zirconia
- Challenge: C₂₋₄⁼ selectivity >58%

Cheng, K. et. al. Advances in Catalysis for Syngas Conversion to Hydrocarbons. In Advances in Catalysis; Song, C., Ed.; Academic Press, 2017; Vol. 60, pp 125–208.

Fischer-Tropsch Methanation

- $CO + 3H_2 \rightarrow CH_4 + H_2O$
 - T: 250–375 °C
 - ΔH = -206 kJ/mol
 - Catalyst: Ni/Ru/Rh
- The opposite of SMR
- Useful for clearing CO poisons (e.g. H-B)

Oxide-Zeolite Syngas Upconversion (OX-ZEO)

- Novel syngas upgrading catalysts capable of breaking
 - 58% $C_{2-4}^{=}$ AFS barrier
 - T: 400 °C; P: 10-25 bar
 - Catalyst: ZnCrO_x on mesoporous
 SAPO zeolites
 - $\circ~$ Up to 94% C₂₋₄ conversion

Science **2016**, 351 (6277), 1065–1068. Angew. Chem. Int. Ed. **2019**, 58 (22), 7400–7404.

The Boudouard Reaction

- $2CO \rightleftharpoons CO_2 + C$
- K=1 at 700 °C (1 bar)
 - Not really a C1
 conversion chemistry
 but this is why so many
 high-T industrial
 reactions output CO
 instead of CO₂

Electrocatalytic CO Reduction to Ethylene (ECOTE)

- CO reduction to ethylene is one of few eCDR reactions with "decent" selectivity
 - r.t., aqueous electrolyte
 - FE%s: 40%~90%
 - js: 400-1200 mA/cm⁻²

• Better C₂ selectivity than F-T

Nat. Catal. 2019, 2, 1124-1131. Angew. Chem. Int. Ed. 2020, 59 (1), 154–160.

[Reverse] Water-Gas Shift ([R]WGS)

•
$$\text{CO} + \text{H}_2\text{O} \Rightarrow \text{CO}_2 + \text{H}_2$$

- $\circ \Delta H = -41.2 \text{ kJ/mol}$
- $\circ \Delta S = -42 \text{ J/mol K}$
- P: 10~60 bar
- "HT/LT" catalysts:
 - \circ 200~250 °C: CuO on ZnO/Al₂O₃
 - \circ 300~450 °C: Fe₂O₃/Cr₂O₃/MgO

Low-T Electrochemical Water-Gas Shift (RT-EWGS)

- Anode: CO + 4 OH⁻ \rightarrow CO₃²⁻ + 2 H₂O + 2 e⁻
- Cathode: $2 H_2 O + 2 e^- \rightarrow H_2 + 2 OH^-$
- Net reaction: CO + 2 OH⁻ \rightarrow H₂ + CO₃²⁻
 - T: 25~150 °C; P: 1 bar
 - Catalyst: Au/ α -MoC on SiO₂/zeolite; T < 150 C
 - ~100% FE, >99.99% H_2 ; 70 mA/cm² @ 0.6 V

Carbon Dioxide

Homogeneous CO₂ Hydrogenation

- $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$ \circ T: 115-165 °C
 - Homogeneous Ru catalyst
 - 79% selectivity for CH_3OH
 - Polyamine CO₂ chemisorbent:
 CO₂ capture at 400 ppm
- Good luck scaling this up

J. Am. Chem. Soc. 2016, 138, 778-781

Heterogeneous CO₂ Hydrogenation

- $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$
 - T: 220~400 °C; P: 5~50 bar
 - Juice P to >350 bar for >95% selectivity and conversion
 - Selectivity: 30~70%
 - Conversion: <30%
 - Catalysts: Cu-ZnO/Al₂O₃; Cu@MOFs; Pd/In₂O₃; ZnO/ZrO₂; Au-CeO_X/TiO₂

Low-Temperature Gas-Diffusion Electrolysis

]	$\Gamma = 18.5 \pm 0.5^{\circ} \mathrm{C}.$	Reprinted from	n Ref. 2	3, Copyr	ight (199	4) with P	ermissi	on from 1	Elsevier		_
Electrode	Potential vs. SHE V	Current density	Faradaic efficiency, %								
		mA cm ⁻²	CH_4	C_2H_4	EtOH ^a	$\operatorname{PrOH}^{\mathrm{b}}$	СО	HCOO-	H_2	Total	
Pb	-1.63	5.0	0.0	0.0	0.0	0.0	0.0	97.4	5.0	102.4	
Hg	-1.51	0.5	0.0	0.0	0.0	0.0	0.0	99.5	0.0	99.5	r → HCOOH
Tl	-1.60	5.0	0.0	0.0	0.0	0.0	0.0	95.1	6.2	101.3	
In	-1.55	5.0	0.0	0.0	0.0	0.0	2.1	94.9	3.3	100.3	$= \rightarrow CO + H_2O$
Sn	-1.48	5.0	0.0	0.0	0.0	0.0	7.1	88.4	4.6	100.1	$^{-} \rightarrow \text{HCHO} + \text{H}_{\cdot}\text{O}$
Cd	-1.63	5.0	1.3	0.0	0.0	0.0	13.9	78.4	9.4	103.0	
Bi ^c	-1.56	1.2	-	-	-	-	-	77	-	-	\rightarrow CH OH + H C
Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0	
Ag	-1.37	5.0	0.0	0.0	0.0	0.0	81.5	0.8	12.4	94.6	
Zn	-1.54	5.0	0.0	0.0	0.0	0.0	79.4	6.1	9.9	95.4	$= \rightarrow CH_4 2H_2O$
Pd	-1.20	5.0	2.9	0.0	0.0	0.0	28.3	2.8	26.2	60.2	: ⁻ → C + 2H ₂ O
Ga	-1.24	5.0	0.0	0.0	0.0	0.0	23.2	0.0	79.0	102.0	2
Cu	-1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5 ^d	
Ni	-1.48	5.0	1.8	0.1	0.0	0.0	0.0	1.4	88.9	92.4°	-
Fe	-0.91	5.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	94.8	
Pt	-1.07	5.0	0.0	0.0	0.0	0.0	0.0	0.1	95.7	95.8	
Ti	-1.60	5.0	0.0	0.0	0.0	0.0	tr.	0.0	99.7	99.7	

Faradaic Efficiencies of Products in CO₂ Reduction at Various Metal Electrodes. Electrolyte: 0.1 M KHCO₃,

^aethanol; ^bn-propanol; ^cthe data are taken from Hori et al.²³ except Bi which is read from an illustration in a paper by Kunugi et al.¹¹⁷; ^dthe total value contains C₃H₅OH(1.4%), CH₃CHO(1.1%), C₂H₅CHO(2.3%) in addition to the tabulated substances; ^ethe total value contains C₂H₆(0.2%)

Science 2020, 370 (6513), eaba6118.

Low-Temperature Gas-Diffusion Electrolysis

CO and HCOOH:

Low-Temperature Gas-Diffusion Electrolysis

Nat. Energy 2022, 7 (2), 130-143.

High-T Solid-Oxide Electrolysis

- $CO_2 \rightarrow CO + \frac{1}{2}O_2$
 - T: 500~1000 °C
 - j: 100~1500 mA/cm²
 - FE%: 80~98%
 - Catalysts: doped
 CeO₂, ZrO₂, La₂O₃

High-T Solid-Oxide Thermolysis

- Catalyst: CeO_{2-δ}
- Energetic efficiencies: ~1%
- Challenges:

- Undesired downstream WGS
- Radiative heat loss, material stability

React. Chem. Eng., **2019**, *4*, 1431-1438. Science **2010**, 330 (6012), 1797–1801. Energy Technol. **2017**, 5 (11), 2138–2149.

C1 Reaction Space: Very Big

CO

- Fischer-Tropsch
 - $\circ \quad n \text{ CO} + \text{H}_2 \rightarrow \text{C}_{\text{n}}\text{H}_{2\text{n}} + \text{H}_2\text{O}$
 - Can make light olefins (n=2-4), paraffins (n=10-20)
 - Catalysts: Co/Fe/Ru/Mo/Ni on zeolites, zirconia
 - T ~ 200-350 C
- Water-gas Shift
 - \circ CO + H₂O → CO₂ + H₂; ΔH = -41 kJ/mol
 - T: 300-500 C; $Fe_2O_3-Cr_2O_3 | Cu/ZnO/Al_2O_3$
 - Often naired with methanation in order to clear.

CO Hydrogenation

- $CO + H_2 \rightarrow CH_3OH$
 - Cu/ZnO/Al₂O₃ catalyst
 - 30-70% selectivity, <30% conversion
 - T: 220-300 C, P: <50 bar
 - Highly P-dependent; at 360 bar, 98% selectivity, 95% conversion

CO₂-to-Liquid-Fuels

- CO₂ to light olefins
 - Typically RWGS to CO and F-T to olefins (n=2-4)
 - Can also be CH_3OH -mediated (ZnZrO_x/SAPO-34); 75-80% selectivity for $C_2^{=}-C_4^{=}$, 12-35% CO_2^{-} conversion at 350-400 C

One-carbon (C1) chemistry has emerged as a beneficial solution to the problem of crude oil depletion and is a sustainable, environmentally friendly reaction step that contributes to human development. C1 chemistry is based on the chemical synthesis of a series of significant chemicals and fuels from compounds containing one-carbon atom, such as CO, CO2, CH4, HCOH, HCOOH and CH3OH. This Research Topic focuses on electro-, photo-, thermo-, plasma-, bio-catalytic conversion of C1 molecules, such as production of dimethyl ether and liquid fuels from CO/CO2; production of methanol, light olefins, and even aromatics from CH4; and production of hydrogen from HCOOH/CH3OH. However, due to the complex and variable conversion process, selective control, energy saving and emission reduction are still great challenges for C1 chemistry. Therefore, we hope that this Research Topic would contribute to the development of C1 chemistry.

Although great progress has been made in C1 molecular transformation, many challenges remain to be addressed. The aim of this Research Topic is to cover promising, recent, and novel research works on addressing the challenges in C1 molecules conversion. For example, the current thermochemical conversion of C1 molecules requires high temperature and high pressure. New efforts should focus on reducing the reaction pressure and temperature to optimize the reaction process, or using photocatalysis and electrocatalysis that are not limited by thermodynamic or kinetic control. In addition, the reaction mechanism of the catalyst catalyzing the conversion of C1 molecules is not yet clear, and the exploration of the reaction mechanism has a significant role in promoting the preparation of efficient catalysts, and thus the development of C1 chemistry.

The articles in the forms of Original Research, Review, Mini-review and Perspective are welcomed. Potential topics include but are not limited to the following:

- Advances in the C1 molecules conversion, especially on the CO2 conversion.
- Conversion of C1 molecules via electro-, photo-, thermo-, plasma-, bio-, and other related chemical reactions.
- Numerous products from conversion of C1 molecules, e.g., production of hydrogen, methanol, light olefins, and even aromatics.

The improvement of C1 meleovier transformation in industrialization

Methanol Steam Reforming (MSR)

Challenge: finding non-noble catalysts CuAlO₄ has high activity at low T, but limited by sintering, CO formation (pyrolysis + RWGS)

Upconversion Notes

- Bifunctional metal oxide/zeolite catalysts for C₂₊ conversion suffer from parasitic [R]WGS due to high reaction temperatures
- Selectivity is problematic: (Anderson-Schulz-Flory (ASF) Distribution)